智能体基础:概念、架构与实现

Header Image

智能体概述 🤖

智能体(Agent)是一个能够自主感知环境并做出决策的 AI 系统。它通过观察、思考、行动的循环来实现特定目标。

核心特征

  1. 自主性:能够独立做出决策
  2. 目标导向:所有行动都服务于特定目标
  3. 环境感知:能够感知和理解环境状态
  4. 适应性:能够根据环境变化调整行为

基础架构 🏗️

智能体框架

from typing import List, Dict, Any, Optional
from abc import ABC, abstractmethod
import json

class Agent(ABC):
    def __init__(
        self,
        name: str,
        description: str,
        goals: List[str]
    ):
        self.name = name
        self.description = description
        self.goals = goals
        self.memory = []
        self.state = {}
        
    @abstractmethod
    def observe(self, environment: Dict[str, Any]) -> Dict[str, Any]:
        """观察环境状态"""
        pass
        
    @abstractmethod
    def think(self, observation: Dict[str, Any]) -> Dict[str, Any]:
        """思考决策过程"""
        pass
        
    @abstractmethod
    def act(self, thought: Dict[str, Any]) -> Dict[str, Any]:
        """执行具体行动"""
        pass
        
    def step(self, environment: Dict[str, Any]) -> Dict[str, Any]:
        """执行一个完整的决策周期"""
        observation = self.observe(environment)
        thought = self.think(observation)
        action = self.act(thought)
        
        # 记录历史
        self.memory.append({
            'observation': observation,
            'thought': thought,
            'action': action
        })
        
        return action

class AssistantAgent(Agent):
    def __init__(
        self,
        name: str = "AI助手",
        description: str = "一个helpful的AI助手",
        goals: List[str] = ["帮助用户解决问题"]
    ):
        super().__init__(name, description, goals)
        self.conversation_history = []
        
    def observe(self, environment: Dict[str, Any]) -> Dict[str, Any]:
        """观察用户输入和环境状态"""
        user_input = environment.get('user_input', '')
        context = environment.get('context', {})
        
        observation = {
            'user_input': user_input,
            'context': context,
            'conversation_history': self.conversation_history
        }
        
        return observation
        
    def think(self, observation: Dict[str, Any]) -> Dict[str, Any]:
        """分析用户需求并规划回应"""
        user_input = observation['user_input']
        context = observation['context']
        history = observation['conversation_history']
        
        # 分析意图
        intent = self._analyze_intent(user_input)
        
        # 生成计划
        plan = self._create_plan(intent, context)
        
        thought = {
            'intent': intent,
            'plan': plan,
            'context': context
        }
        
        return thought
        
    def act(self, thought: Dict[str, Any]) -> Dict[str, Any]:
        """生成回应并执行行动"""
        response = self._generate_response(thought)
        
        # 更新对话历史
        self.conversation_history.append({
            'user': thought['intent']['original_input'],
            'assistant': response
        })
        
        action = {
            'response': response,
            'type': thought['intent']['type']
        }
        
        return action
        
    def _analyze_intent(self, user_input: str) -> Dict[str, Any]:
        """分析用户意图"""
        # 实现意图分析逻辑
        return {
            'original_input': user_input,
            'type': 'general_query',
            'details': {}
        }
        
    def _create_plan(
        self,
        intent: Dict[str, Any],
        context: Dict[str, Any]
    ) -> List[str]:
        """创建响应计划"""
        # 实现计划生成逻辑
        return ['理解用户需求', '生成合适回应']
        
    def _generate_response(self, thought: Dict[str, Any]) -> str:
        """生成回应内容"""
        # 实现回应生成逻辑
        return "这是一个示例回应"

决策机制 🧠

1. 观察(Observe)

观察模块负责感知环境状态:

class EnvironmentSensor:
    def __init__(self):
        self.sensors = {}
        
    def register_sensor(
        self,
        name: str,
        sensor_func: callable
    ):
        """注册新的传感器"""
        self.sensors[name] = sensor_func
        
    def get_observation(
        self,
        sensor_name: str,
        **kwargs
    ) -> Dict[str, Any]:
        """获取特定传感器的观察结果"""
        if sensor_name not in self.sensors:
            raise ValueError(f"未知的传感器: {sensor_name}")
            
        return self.sensors[sensor_name](**kwargs)
        
class EnhancedAgent(Agent):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.sensor = EnvironmentSensor()
        
        # 注册默认传感器
        self.sensor.register_sensor(
            'text_input',
            self._process_text_input
        )
        self.sensor.register_sensor(
            'system_state',
            self._get_system_state
        )
        
    def _process_text_input(self, text: str) -> Dict[str, Any]:
        """处理文本输入"""
        return {
            'type': 'text',
            'content': text,
            'timestamp': time.time()
        }
        
    def _get_system_state(self) -> Dict[str, Any]:
        """获取系统状态"""
        return {
            'memory_usage': len(self.memory),
            'state': self.state,
            'timestamp': time.time()
        }

2. 思考(Think)

思考模块实现决策逻辑:

class DecisionEngine:
    def __init__(self):
        self.strategies = {}
        
    def register_strategy(
        self,
        name: str,
        strategy_func: callable
    ):
        """注册决策策略"""
        self.strategies[name] = strategy_func
        
    def make_decision(
        self,
        observation: Dict[str, Any],
        strategy_name: str,
        **kwargs
    ) -> Dict[str, Any]:
        """使用指定策略做出决策"""
        if strategy_name not in self.strategies:
            raise ValueError(f"未知的策略: {strategy_name}")
            
        return self.strategies[strategy_name](
            observation,
            **kwargs
        )

class StrategicAgent(EnhancedAgent):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.decision_engine = DecisionEngine()
        
        # 注册默认策略
        self.decision_engine.register_strategy(
            'rule_based',
            self._rule_based_decision
        )
        self.decision_engine.register_strategy(
            'ml_based',
            self._ml_based_decision
        )
        
    def _rule_based_decision(
        self,
        observation: Dict[str, Any]
    ) -> Dict[str, Any]:
        """基于规则的决策"""
        # 实现规则决策逻辑
        return {
            'decision_type': 'rule_based',
            'action': 'default_action'
        }
        
    def _ml_based_decision(
        self,
        observation: Dict[str, Any]
    ) -> Dict[str, Any]:
        """基于机器学习的决策"""
        # 实现ML决策逻辑
        return {
            'decision_type': 'ml_based',
            'action': 'predicted_action'
        }

3. 行动(Act)

行动模块执行具体操作:

class ActionExecutor:
    def __init__(self):
        self.actions = {}
        
    def register_action(
        self,
        name: str,
        action_func: callable
    ):
        """注册新的行动"""
        self.actions[name] = action_func
        
    def execute(
        self,
        action_name: str,
        **kwargs
    ) -> Dict[str, Any]:
        """执行指定行动"""
        if action_name not in self.actions:
            raise ValueError(f"未知的行动: {action_name}")
            
        return self.actions[action_name](**kwargs)

class ActionableAgent(StrategicAgent):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.executor = ActionExecutor()
        
        # 注册默认行动
        self.executor.register_action(
            'text_response',
            self._generate_text_response
        )
        self.executor.register_action(
            'system_command',
            self._execute_system_command
        )
        
    def _generate_text_response(
        self,
        content: str,
        **kwargs
    ) -> Dict[str, Any]:
        """生成文本回应"""
        return {
            'type': 'text_response',
            'content': content,
            'timestamp': time.time()
        }
        
    def _execute_system_command(
        self,
        command: str,
        **kwargs
    ) -> Dict[str, Any]:
        """执行系统命令"""
        # 实现系统命令执行逻辑
        return {
            'type': 'system_command',
            'command': command,
            'status': 'executed'
        }

状态管理 💾

1. 记忆系统

class Memory:
    def __init__(self, capacity: int = 1000):
        self.capacity = capacity
        self.short_term = []
        self.long_term = {}
        
    def add_short_term(self, item: Dict[str, Any]):
        """添加短期记忆"""
        self.short_term.append(item)
        
        # 如果超过容量,移除最旧的记忆
        if len(self.short_term) > self.capacity:
            self.short_term.pop(0)
            
    def add_long_term(
        self,
        key: str,
        value: Any
    ):
        """添加长期记忆"""
        self.long_term[key] = value
        
    def get_recent(self, n: int = 5) -> List[Dict[str, Any]]:
        """获取最近的n条记忆"""
        return self.short_term[-n:]
        
    def search_long_term(
        self,
        query: str
    ) -> List[Dict[str, Any]]:
        """搜索长期记忆"""
        # 实现记忆搜索逻辑
        return []

2. 状态追踪

class StateTracker:
    def __init__(self):
        self.current_state = {}
        self.state_history = []
        
    def update_state(
        self,
        updates: Dict[str, Any]
    ):
        """更新当前状态"""
        # 保存历史状态
        self.state_history.append(
            self.current_state.copy()
        )
        
        # 更新当前状态
        self.current_state.update(updates)
        
    def get_state(self) -> Dict[str, Any]:
        """获取当前状态"""
        return self.current_state.copy()
        
    def rollback(self) -> Dict[str, Any]:
        """回滚到上一个状态"""
        if self.state_history:
            self.current_state = self.state_history.pop()
        return self.current_state

实践应用 💡

1. 创建智能助手

class SmartAssistant(ActionableAgent):
    def __init__(self):
        super().__init__(
            name="智能助手",
            description="一个功能强大的AI助手",
            goals=["提供准确的信息", "高效解决问题"]
        )
        self.memory = Memory()
        self.state_tracker = StateTracker()
        
    def chat(self, user_input: str) -> str:
        """处理用户输入并返回回应"""
        # 构建环境
        environment = {
            'user_input': user_input,
            'context': self.state_tracker.get_state()
        }
        
        # 执行决策周期
        action = self.step(environment)
        
        # 更新状态
        self.state_tracker.update_state({
            'last_interaction': {
                'user_input': user_input,
                'response': action['response']
            }
        })
        
        return action['response']

2. 使用示例

# 创建智能助手实例
assistant = SmartAssistant()

# 与助手对话
response = assistant.chat("你好,请帮我查找关于Python的学习资源")
print(response)

# 查看助手状态
print("当前状态:", assistant.state_tracker.get_state())
print("最近记忆:", assistant.memory.get_recent())

最佳实践 ✨

  1. 模块化设计

    • 将观察、思考、行动模块分离
    • 使用接口定义标准交互方式
    • 保持代码结构清晰
  2. 状态管理

    • 实现可靠的状态追踪
    • 区分短期和长期记忆
    • 定期清理无用状态
  3. 错误处理

    • 实现优雅的错误恢复
    • 记录关键操作日志
    • 设置合理的超时机制
  4. 性能优化

    • 使用异步处理
    • 实现缓存机制
    • 控制资源使用

小结 📝

本章我们学习了智能体的基础知识:

  1. 核心概念

    • 智能体定义
    • 基本特征
    • 工作原理
  2. 架构设计

    • 观察机制
    • 决策系统
    • 行动执行
  3. 状态管理

    • 记忆系统
    • 状态追踪
    • 历史记录

通过这些基础知识,我们可以开始构建简单的智能体系统。在接下来的章节中,我们将探讨更高级的主题,如多智能体系统和工具集成。