智能体基础:概念、架构与实现
智能体概述 🤖
智能体(Agent)是一个能够自主感知环境并做出决策的 AI 系统。它通过观察、思考、行动的循环来实现特定目标。
核心特征
- 自主性:能够独立做出决策
- 目标导向:所有行动都服务于特定目标
- 环境感知:能够感知和理解环境状态
- 适应性:能够根据环境变化调整行为
基础架构 🏗️
智能体框架
from typing import List, Dict, Any, Optional
from abc import ABC, abstractmethod
import json
class Agent(ABC):
def __init__(
self,
name: str,
description: str,
goals: List[str]
):
self.name = name
self.description = description
self.goals = goals
self.memory = []
self.state = {}
@abstractmethod
def observe(self, environment: Dict[str, Any]) -> Dict[str, Any]:
"""观察环境状态"""
pass
@abstractmethod
def think(self, observation: Dict[str, Any]) -> Dict[str, Any]:
"""思考决策过程"""
pass
@abstractmethod
def act(self, thought: Dict[str, Any]) -> Dict[str, Any]:
"""执行具体行动"""
pass
def step(self, environment: Dict[str, Any]) -> Dict[str, Any]:
"""执行一个完整的决策周期"""
observation = self.observe(environment)
thought = self.think(observation)
action = self.act(thought)
# 记录历史
self.memory.append({
'observation': observation,
'thought': thought,
'action': action
})
return action
class AssistantAgent(Agent):
def __init__(
self,
name: str = "AI助手",
description: str = "一个helpful的AI助手",
goals: List[str] = ["帮助用户解决问题"]
):
super().__init__(name, description, goals)
self.conversation_history = []
def observe(self, environment: Dict[str, Any]) -> Dict[str, Any]:
"""观察用户输入和环境状态"""
user_input = environment.get('user_input', '')
context = environment.get('context', {})
observation = {
'user_input': user_input,
'context': context,
'conversation_history': self.conversation_history
}
return observation
def think(self, observation: Dict[str, Any]) -> Dict[str, Any]:
"""分析用户需求并规划回应"""
user_input = observation['user_input']
context = observation['context']
history = observation['conversation_history']
# 分析意图
intent = self._analyze_intent(user_input)
# 生成计划
plan = self._create_plan(intent, context)
thought = {
'intent': intent,
'plan': plan,
'context': context
}
return thought
def act(self, thought: Dict[str, Any]) -> Dict[str, Any]:
"""生成回应并执行行动"""
response = self._generate_response(thought)
# 更新对话历史
self.conversation_history.append({
'user': thought['intent']['original_input'],
'assistant': response
})
action = {
'response': response,
'type': thought['intent']['type']
}
return action
def _analyze_intent(self, user_input: str) -> Dict[str, Any]:
"""分析用户意图"""
# 实现意图分析逻辑
return {
'original_input': user_input,
'type': 'general_query',
'details': {}
}
def _create_plan(
self,
intent: Dict[str, Any],
context: Dict[str, Any]
) -> List[str]:
"""创建响应计划"""
# 实现计划生成逻辑
return ['理解用户需求', '生成合适回应']
def _generate_response(self, thought: Dict[str, Any]) -> str:
"""生成回应内容"""
# 实现回应生成逻辑
return "这是一个示例回应"
决策机制 🧠
1. 观察(Observe)
观察模块负责感知环境状态:
class EnvironmentSensor:
def __init__(self):
self.sensors = {}
def register_sensor(
self,
name: str,
sensor_func: callable
):
"""注册新的传感器"""
self.sensors[name] = sensor_func
def get_observation(
self,
sensor_name: str,
**kwargs
) -> Dict[str, Any]:
"""获取特定传感器的观察结果"""
if sensor_name not in self.sensors:
raise ValueError(f"未知的传感器: {sensor_name}")
return self.sensors[sensor_name](**kwargs)
class EnhancedAgent(Agent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.sensor = EnvironmentSensor()
# 注册默认传感器
self.sensor.register_sensor(
'text_input',
self._process_text_input
)
self.sensor.register_sensor(
'system_state',
self._get_system_state
)
def _process_text_input(self, text: str) -> Dict[str, Any]:
"""处理文本输入"""
return {
'type': 'text',
'content': text,
'timestamp': time.time()
}
def _get_system_state(self) -> Dict[str, Any]:
"""获取系统状态"""
return {
'memory_usage': len(self.memory),
'state': self.state,
'timestamp': time.time()
}
2. 思考(Think)
思考模块实现决策逻辑:
class DecisionEngine:
def __init__(self):
self.strategies = {}
def register_strategy(
self,
name: str,
strategy_func: callable
):
"""注册决策策略"""
self.strategies[name] = strategy_func
def make_decision(
self,
observation: Dict[str, Any],
strategy_name: str,
**kwargs
) -> Dict[str, Any]:
"""使用指定策略做出决策"""
if strategy_name not in self.strategies:
raise ValueError(f"未知的策略: {strategy_name}")
return self.strategies[strategy_name](
observation,
**kwargs
)
class StrategicAgent(EnhancedAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.decision_engine = DecisionEngine()
# 注册默认策略
self.decision_engine.register_strategy(
'rule_based',
self._rule_based_decision
)
self.decision_engine.register_strategy(
'ml_based',
self._ml_based_decision
)
def _rule_based_decision(
self,
observation: Dict[str, Any]
) -> Dict[str, Any]:
"""基于规则的决策"""
# 实现规则决策逻辑
return {
'decision_type': 'rule_based',
'action': 'default_action'
}
def _ml_based_decision(
self,
observation: Dict[str, Any]
) -> Dict[str, Any]:
"""基于机器学习的决策"""
# 实现ML决策逻辑
return {
'decision_type': 'ml_based',
'action': 'predicted_action'
}
3. 行动(Act)
行动模块执行具体操作:
class ActionExecutor:
def __init__(self):
self.actions = {}
def register_action(
self,
name: str,
action_func: callable
):
"""注册新的行动"""
self.actions[name] = action_func
def execute(
self,
action_name: str,
**kwargs
) -> Dict[str, Any]:
"""执行指定行动"""
if action_name not in self.actions:
raise ValueError(f"未知的行动: {action_name}")
return self.actions[action_name](**kwargs)
class ActionableAgent(StrategicAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.executor = ActionExecutor()
# 注册默认行动
self.executor.register_action(
'text_response',
self._generate_text_response
)
self.executor.register_action(
'system_command',
self._execute_system_command
)
def _generate_text_response(
self,
content: str,
**kwargs
) -> Dict[str, Any]:
"""生成文本回应"""
return {
'type': 'text_response',
'content': content,
'timestamp': time.time()
}
def _execute_system_command(
self,
command: str,
**kwargs
) -> Dict[str, Any]:
"""执行系统命令"""
# 实现系统命令执行逻辑
return {
'type': 'system_command',
'command': command,
'status': 'executed'
}
状态管理 💾
1. 记忆系统
class Memory:
def __init__(self, capacity: int = 1000):
self.capacity = capacity
self.short_term = []
self.long_term = {}
def add_short_term(self, item: Dict[str, Any]):
"""添加短期记忆"""
self.short_term.append(item)
# 如果超过容量,移除最旧的记忆
if len(self.short_term) > self.capacity:
self.short_term.pop(0)
def add_long_term(
self,
key: str,
value: Any
):
"""添加长期记忆"""
self.long_term[key] = value
def get_recent(self, n: int = 5) -> List[Dict[str, Any]]:
"""获取最近的n条记忆"""
return self.short_term[-n:]
def search_long_term(
self,
query: str
) -> List[Dict[str, Any]]:
"""搜索长期记忆"""
# 实现记忆搜索逻辑
return []
2. 状态追踪
class StateTracker:
def __init__(self):
self.current_state = {}
self.state_history = []
def update_state(
self,
updates: Dict[str, Any]
):
"""更新当前状态"""
# 保存历史状态
self.state_history.append(
self.current_state.copy()
)
# 更新当前状态
self.current_state.update(updates)
def get_state(self) -> Dict[str, Any]:
"""获取当前状态"""
return self.current_state.copy()
def rollback(self) -> Dict[str, Any]:
"""回滚到上一个状态"""
if self.state_history:
self.current_state = self.state_history.pop()
return self.current_state
实践应用 💡
1. 创建智能助手
class SmartAssistant(ActionableAgent):
def __init__(self):
super().__init__(
name="智能助手",
description="一个功能强大的AI助手",
goals=["提供准确的信息", "高效解决问题"]
)
self.memory = Memory()
self.state_tracker = StateTracker()
def chat(self, user_input: str) -> str:
"""处理用户输入并返回回应"""
# 构建环境
environment = {
'user_input': user_input,
'context': self.state_tracker.get_state()
}
# 执行决策周期
action = self.step(environment)
# 更新状态
self.state_tracker.update_state({
'last_interaction': {
'user_input': user_input,
'response': action['response']
}
})
return action['response']
2. 使用示例
# 创建智能助手实例
assistant = SmartAssistant()
# 与助手对话
response = assistant.chat("你好,请帮我查找关于Python的学习资源")
print(response)
# 查看助手状态
print("当前状态:", assistant.state_tracker.get_state())
print("最近记忆:", assistant.memory.get_recent())
最佳实践 ✨
模块化设计
- 将观察、思考、行动模块分离
- 使用接口定义标准交互方式
- 保持代码结构清晰
状态管理
- 实现可靠的状态追踪
- 区分短期和长期记忆
- 定期清理无用状态
错误处理
- 实现优雅的错误恢复
- 记录关键操作日志
- 设置合理的超时机制
性能优化
- 使用异步处理
- 实现缓存机制
- 控制资源使用
小结 📝
本章我们学习了智能体的基础知识:
核心概念
- 智能体定义
- 基本特征
- 工作原理
架构设计
- 观察机制
- 决策系统
- 行动执行
状态管理
- 记忆系统
- 状态追踪
- 历史记录
通过这些基础知识,我们可以开始构建简单的智能体系统。在接下来的章节中,我们将探讨更高级的主题,如多智能体系统和工具集成。