中文大语言模型集成
1. 主流中文大语言模型介绍
1.1 模型概览
- 百度文心一言
- 讯飞星火认知
- 智谱 ChatGLM
- 阿里通义千问
- 商汤日日新
1.2 模型特点比较
from enum import Enum
from typing import Dict, Any
class ModelType(Enum):
WENXIN = "wenxin"
SPARK = "spark"
CHATGLM = "chatglm"
QIANWEN = "qianwen"
RIRIXIN = "ririxin"
class ModelFeatures:
def __init__(self, name: str, features: Dict[str, Any]):
self.name = name
self.features = features
# 模型特点示例
model_features = {
ModelType.WENXIN: ModelFeatures(
"文心一言",
{
"context_length": 2000,
"streaming": True,
"multi_modal": True
}
)
}
2. API接入实现
2.1 统一接口封装
from abc import ABC, abstractmethod
from typing import Optional, List
class LLMBase(ABC):
@abstractmethod
async def chat(self, messages: List[Dict[str, str]]) -> str:
pass
@abstractmethod
async def generate(self, prompt: str) -> str:
pass
class WenxinAPI(LLMBase):
def __init__(self, api_key: str, secret_key: str):
self.api_key = api_key
self.secret_key = secret_key
self.access_token = None
async def _get_access_token(self) -> str:
# 实现获取access token的逻辑
pass
async def chat(self, messages: List[Dict[str, str]]) -> str:
# 实现文心一言对话接口
pass
async def generate(self, prompt: str) -> str:
# 实现文本生成接口
pass
2.2 错误处理
class LLMError(Exception):
def __init__(self, message: str, model: str, error_code: Optional[str] = None):
self.model = model
self.error_code = error_code
super().__init__(f"{model}: {message}")
class TokenError(LLMError):
pass
class QuotaExceededError(LLMError):
pass
class ModelNotAvailableError(LLMError):
pass
3. 高级功能实现
3.1 流式响应处理
from typing import AsyncGenerator
class StreamingChat:
async def stream_chat(
self,
messages: List[Dict[str, str]]
) -> AsyncGenerator[str, None]:
async for chunk in self._make_streaming_request(messages):
yield self._process_chunk(chunk)
async def _make_streaming_request(
self,
messages: List[Dict[str, str]]
) -> AsyncGenerator[Dict[str, Any], None]:
# 实现流式请求逻辑
pass
def _process_chunk(self, chunk: Dict[str, Any]) -> str:
# 处理响应片段
pass
3.2 多模态能力
from PIL import Image
from pathlib import Path
class MultiModalLLM:
async def analyze_image(
self,
image: Union[str, Path, Image.Image],
prompt: str
) -> str:
# 图像分析实现
pass
async def generate_image(
self,
prompt: str,
size: Tuple[int, int] = (512, 512)
) -> Image.Image:
# 图像生成实现
pass
4. 性能优化
4.1 并发请求处理
import asyncio
from typing import List, Dict
class BatchProcessor:
def __init__(self, max_concurrent: int = 5):
self.semaphore = asyncio.Semaphore(max_concurrent)
async def process_batch(
self,
items: List[str],
llm: LLMBase
) -> List[str]:
async def process_item(item: str) -> str:
async with self.semaphore:
return await llm.generate(item)
tasks = [process_item(item) for item in items]
return await asyncio.gather(*tasks)
4.2 缓存机制
from functools import lru_cache
from typing import Optional
class ResponseCache:
def __init__(self, capacity: int = 1000):
self.cache = lru_cache(maxsize=capacity)(self._get_cached_response)
def _get_cached_response(self, key: str) -> Optional[str]:
# 实现缓存逻辑
pass
async def get_or_compute(
self,
key: str,
compute_func: Callable[[], Awaitable[str]]
) -> str:
if cached := self.cache(key):
return cached
result = await compute_func()
self.cache(key, result)
return result
5. 最佳实践
5.1 提示词优化
class PromptTemplate:
def __init__(self, template: str):
self.template = template
def format(self, **kwargs) -> str:
return self.template.format(**kwargs)
# 使用示例
code_review_template = PromptTemplate(
"请帮我检查以下代码可能存在的问题:\n{code}\n"
"重点关注:\n1. 代码规范\n2. 性能优化\n3. 安全隐患"
)
5.2 错误重试
from tenacity import (
retry,
stop_after_attempt,
wait_exponential
)
class RetryableAPI:
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10)
)
async def call_with_retry(self, func: Callable, *args, **kwargs):
try:
return await func(*args, **kwargs)
except (TokenError, QuotaExceededError) as e:
# 处理特定错误
raise
except Exception as e:
# 处理其他错误
raise
总结
中文大语言模型的集成需要考虑多个方面,包括API封装、错误处理、性能优化等。通过合理的架构设计和最佳实践,可以构建稳定、高效的AI应用。在实际应用中,需要根据具体需求选择合适的模型和优化策略。