卷积神经网络 (Convolutional Neural Networks)

卷积神经网络简介 (Introduction to CNNs)

卷积神经网络(CNN)是一种专门用于处理网格结构数据的深度学习架构,特别适合于图像处理任务。

Convolutional Neural Networks (CNNs) are deep learning architectures specifically designed for processing grid-like data, particularly well-suited for image processing tasks.

基本组件 (Basic Components)

卷积层 (Convolutional Layers)

  • 卷积核与特征图 (Kernels and Feature Maps)
  • 步长与填充 (Stride and Padding)
  • 感受野 (Receptive Field)

池化层 (Pooling Layers)

  • 最大池化 (Max Pooling)
  • 平均池化 (Average Pooling)
  • 全局池化 (Global Pooling)

激活函数 (Activation Functions)

  • ReLU及其变体 (ReLU and Variants)
  • 特征激活图 (Feature Activation Maps)

CNN架构设计 (CNN Architecture Design)

经典架构 (Classic Architectures)

  • LeNet-5
  • AlexNet
  • VGG
  • ResNet

现代创新 (Modern Innovations)

  • 残差连接 (Residual Connections)
  • 瓶颈层 (Bottleneck Layers)
  • 注意力机制 (Attention Mechanisms)

实践应用 (Practical Applications)

图像分类 (Image Classification)

import tensorflow as tf

# 构建CNN模型 (Build CNN model)
model = tf.keras.Sequential([
    # 卷积层 (Convolutional layers)
    tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D((2, 2)),
    tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
    tf.keras.layers.MaxPooling2D((2, 2)),
    
    # 全连接层 (Fully connected layers)
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(10, activation='softmax')
])

# 编译模型 (Compile model)
model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
)

目标检测 (Object Detection)

  • 边界框预测 (Bounding Box Prediction)
  • 锚框设计 (Anchor Box Design)
  • 非极大值抑制 (Non-Maximum Suppression)

图像分割 (Image Segmentation)

  • 语义分割 (Semantic Segmentation)
  • 实例分割 (Instance Segmentation)
  • U-Net架构 (U-Net Architecture)

高级技巧 (Advanced Techniques)

数据增强 (Data Augmentation)

  • 几何变换 (Geometric Transformations)
  • 颜色变换 (Color Transformations)
  • 混合策略 (Mixed Strategies)

迁移学习 (Transfer Learning)

  • 预训练模型 (Pre-trained Models)
  • 微调策略 (Fine-tuning Strategies)
  • 特征提取 (Feature Extraction)

实战项目 (Hands-on Project)

在下一节中,我们将实现一个完整的图像分类系统,包括数据预处理、模型训练和性能评估。

In the next section, we will implement a complete image classification system, including data preprocessing, model training, and performance evaluation.