卷积神经网络 (Convolutional Neural Networks)
卷积神经网络简介 (Introduction to CNNs)
卷积神经网络(CNN)是一种专门用于处理网格结构数据的深度学习架构,特别适合于图像处理任务。
Convolutional Neural Networks (CNNs) are deep learning architectures specifically designed for processing grid-like data, particularly well-suited for image processing tasks.
基本组件 (Basic Components)
卷积层 (Convolutional Layers)
- 卷积核与特征图 (Kernels and Feature Maps)
- 步长与填充 (Stride and Padding)
- 感受野 (Receptive Field)
池化层 (Pooling Layers)
- 最大池化 (Max Pooling)
- 平均池化 (Average Pooling)
- 全局池化 (Global Pooling)
激活函数 (Activation Functions)
- ReLU及其变体 (ReLU and Variants)
- 特征激活图 (Feature Activation Maps)
CNN架构设计 (CNN Architecture Design)
经典架构 (Classic Architectures)
- LeNet-5
- AlexNet
- VGG
- ResNet
现代创新 (Modern Innovations)
- 残差连接 (Residual Connections)
- 瓶颈层 (Bottleneck Layers)
- 注意力机制 (Attention Mechanisms)
实践应用 (Practical Applications)
图像分类 (Image Classification)
import tensorflow as tf
# 构建CNN模型 (Build CNN model)
model = tf.keras.Sequential([
# 卷积层 (Convolutional layers)
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D((2, 2)),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D((2, 2)),
# 全连接层 (Fully connected layers)
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(10, activation='softmax')
])
# 编译模型 (Compile model)
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
目标检测 (Object Detection)
- 边界框预测 (Bounding Box Prediction)
- 锚框设计 (Anchor Box Design)
- 非极大值抑制 (Non-Maximum Suppression)
图像分割 (Image Segmentation)
- 语义分割 (Semantic Segmentation)
- 实例分割 (Instance Segmentation)
- U-Net架构 (U-Net Architecture)
高级技巧 (Advanced Techniques)
数据增强 (Data Augmentation)
- 几何变换 (Geometric Transformations)
- 颜色变换 (Color Transformations)
- 混合策略 (Mixed Strategies)
迁移学习 (Transfer Learning)
- 预训练模型 (Pre-trained Models)
- 微调策略 (Fine-tuning Strategies)
- 特征提取 (Feature Extraction)
实战项目 (Hands-on Project)
在下一节中,我们将实现一个完整的图像分类系统,包括数据预处理、模型训练和性能评估。
In the next section, we will implement a complete image classification system, including data preprocessing, model training, and performance evaluation.