深度学习基础 (Deep Learning Fundamentals)
什么是深度学习 (What is Deep Learning)
深度学习是机器学习的一个重要分支,它通过构建和训练深层神经网络来学习数据的层次化表示。
Deep learning is a significant branch of machine learning that learns hierarchical representations of data through building and training deep neural networks.
神经网络基础 (Neural Network Basics)
人工神经元 (Artificial Neurons)
- 结构与功能 (Structure and Function)
- 激活函数 (Activation Functions)
- 权重与偏置 (Weights and Biases)
前向传播 (Forward Propagation)
- 数学原理 (Mathematical Principles)
- 计算过程 (Computation Process)
- 实现示例 (Implementation Examples)
反向传播 (Backpropagation)
- 梯度下降 (Gradient Descent)
- 链式法则 (Chain Rule)
- 参数更新 (Parameter Updates)
深度神经网络架构 (Deep Neural Network Architectures)
多层感知机 (Multilayer Perceptrons)
- 网络层次 (Network Layers)
- 层间连接 (Layer Connections)
- 常见架构 (Common Architectures)
损失函数 (Loss Functions)
- 分类问题 (Classification Problems)
- 回归问题 (Regression Problems)
- 自定义损失 (Custom Loss Functions)
实践应用 (Practical Applications)
模型训练 (Model Training)
import tensorflow as tf
# 构建简单的深度神经网络 (Build a simple deep neural network)
model = tf.keras.Sequential([
tf.keras.layers.Dense(128, activation='relu', input_shape=(784,)),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
# 编译模型 (Compile the model)
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
模型评估 (Model Evaluation)
- 评估指标 (Evaluation Metrics)
- 过拟合处理 (Handling Overfitting)
- 性能优化 (Performance Optimization)
进阶主题 (Advanced Topics)
- 正则化技术 (Regularization Techniques)
- 优化器选择 (Optimizer Selection)
- 超参数调优 (Hyperparameter Tuning)
实战项目 (Hands-on Project)
在下一节中,我们将通过一个实际的图像分类项目来应用这些概念。
In the next section, we will apply these concepts through a practical image classification project.