强化学习入门 (Introduction to Reinforcement Learning)
强化学习基础 (Reinforcement Learning Basics)
强化学习是一种通过与环境交互来学习最优策略的机器学习方法,通过试错和奖励机制来实现目标。
Reinforcement Learning is a machine learning method that learns optimal policies through interaction with an environment, achieving goals through trial-and-error and reward mechanisms.
核心概念 (Core Concepts)
基本要素 (Basic Elements)
- 状态空间 (State Space)
- 动作空间 (Action Space)
- 奖励函数 (Reward Function)
- 策略函数 (Policy Function)
价值函数 (Value Functions)
- 状态价值函数 (State Value Function)
- 动作价值函数 (Action Value Function)
- 优势函数 (Advantage Function)
探索与利用 (Exploration vs Exploitation)
- ε-贪心策略 (ε-greedy Policy)
- 玻尔兹曼探索 (Boltzmann Exploration)
- 参数噪声 (Parameter Noise)
经典算法 (Classic Algorithms)
基于价值的方法 (Value-based Methods)
- Q-Learning
- DQN (Deep Q-Network)
- Double DQN
基于策略的方法 (Policy-based Methods)
- REINFORCE
- Actor-Critic
- PPO (Proximal Policy Optimization)
实践应用 (Practical Applications)
游戏AI (Game AI)
import gym
import numpy as np
# 创建环境 (Create environment)
env = gym.make('CartPole-v1')
# Q-learning实现 (Q-learning implementation)
class QLearningAgent:
def __init__(self, state_size, action_size):
self.q_table = np.zeros((state_size, action_size))
self.learning_rate = 0.1
self.gamma = 0.95
self.epsilon = 0.1
def choose_action(self, state):
if np.random.random() < self.epsilon:
return env.action_space.sample()
return np.argmax(self.q_table[state])
def learn(self, state, action, reward, next_state):
old_value = self.q_table[state, action]
next_max = np.max(self.q_table[next_state])
new_value = (1 - self.learning_rate) * old_value + \
self.learning_rate * (reward + self.gamma * next_max)
self.q_table[state, action] = new_value
机器人控制 (Robot Control)
- 运动规划 (Motion Planning)
- 任务学习 (Task Learning)
- 多智能体系统 (Multi-agent Systems)
推荐系统 (Recommendation Systems)
- 用户交互 (User Interaction)
- 个性化推荐 (Personalized Recommendations)
- 在线学习 (Online Learning)
高级主题 (Advanced Topics)
分层强化学习 (Hierarchical RL)
- 选项框架 (Options Framework)
- 目标分解 (Goal Decomposition)
- 技能迁移 (Skill Transfer)
多任务学习 (Multi-task Learning)
- 任务表示 (Task Representation)
- 知识迁移 (Knowledge Transfer)
- 课程学习 (Curriculum Learning)
实战项目 (Hands-on Project)
在下一节中,我们将实现一个强化学习智能体来玩简单的游戏,理解基本的强化学习概念和实现方法。
In the next section, we will implement a reinforcement learning agent to play simple games, understanding basic RL concepts and implementation methods.