生成对抗网络 (Generative Adversarial Networks)
GAN简介 (Introduction to GANs)
生成对抗网络(GAN)是一种深度学习模型,通过生成器和判别器的对抗学习来生成逼真的数据。
Generative Adversarial Networks (GANs) are deep learning models that generate realistic data through adversarial learning between a generator and a discriminator.
基本架构 (Basic Architecture)
生成器 (Generator)
- 网络结构 (Network Structure)
- 潜在空间 (Latent Space)
- 上采样技术 (Upsampling Techniques)
判别器 (Discriminator)
- 分类任务 (Classification Task)
- 特征提取 (Feature Extraction)
- 损失函数 (Loss Functions)
GAN变体 (GAN Variants)
DCGAN (Deep Convolutional GAN)
- 卷积架构 (Convolutional Architecture)
- 稳定训练 (Stable Training)
- 应用场景 (Applications)
条件GAN (Conditional GAN)
- 条件嵌入 (Condition Embedding)
- 类别控制 (Class Control)
- 属性编辑 (Attribute Editing)
CycleGAN
- 循环一致性 (Cycle Consistency)
- 无配对数据 (Unpaired Data)
- 风格迁移 (Style Transfer)
实践应用 (Practical Applications)
图像生成 (Image Generation)
import tensorflow as tf
# 生成器模型 (Generator model)
def make_generator_model():
model = tf.keras.Sequential([
# 开始从随机噪声生成 (Start from random noise)
tf.keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,)),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Reshape((7, 7, 256)),
# 上采样层 (Upsampling layers)
tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same'),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(),
# 输出层 (Output layer)
tf.keras.layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', activation='tanh')
])
return model
# 判别器模型 (Discriminator model)
def make_discriminator_model():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 3]),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1)
])
return model
图像编辑 (Image Editing)
- 风格迁移 (Style Transfer)
- 图像修复 (Image Inpainting)
- 超分辨率 (Super Resolution)
数据增强 (Data Augmentation)
- 样本生成 (Sample Generation)
- 域适应 (Domain Adaptation)
- 类别平衡 (Class Balancing)
高级技巧 (Advanced Techniques)
训练稳定性 (Training Stability)
- 梯度惩罚 (Gradient Penalty)
- 谱归一化 (Spectral Normalization)
- 渐进式增长 (Progressive Growing)
评估指标 (Evaluation Metrics)
- Inception Score
- FID Score
- 多样性度量 (Diversity Metrics)
实战项目 (Hands-on Project)
在下一节中,我们将实现一个基于DCGAN的图像生成系统,学习如何训练和优化GAN模型。
In the next section, we will implement an image generation system based on DCGAN, learning how to train and optimize GAN models.